Repair and regeneration of osteochondral defects in the articular joints.
نویسندگان
چکیده
People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.
منابع مشابه
Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair.
Due to their good biocompatibility and mechanical integrity, tissue engineering scaffolds have become a principal method of repair and regeneration of osteochondral defects. To improve their intrinsic properties, control their degenerative times, and enhance their cell adhesion and differentiation, numerous scaffold architectures and formation methods have been developed and tested, but the ide...
متن کاملRepair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model
Functional reconstruction of large osteochondral defects is always a major challenge in articular surgery. Some studies have reported the feasibility of repairing articular osteochondral defects using bone marrow stromal cells (BMSCs) and biodegradable scaffolds. However, no significant breakthroughs have been achieved in clinical translation due to the instability of in vivo cartilage regenera...
متن کاملInjikovatelný hydrogel funkcionalizovaný suspenzí bohatou na trombocyty a mikročásticemi pro urychlení regenerace chrupavky
PURPOSE OF THE STUDY Articular cartilage defects arise due to injury or osteochondral disease such as osteonecrosis or osteochondritis dissecans. In adult patients cartilage has minimal ability to repair itself and the lesions develop into degenerative arthritis. Overcoming the low regenerative capacity of the cartilage cells and the Hayflick limit poses a challenge for the therapy of osteochon...
متن کاملUsing Xenogenic (Calf Foetal) Osteochondral Transplantation for Articular Cartilage Defect in Rabbit Model
Background: The destruction of articular cartilage is the major cause of articular problems. The articular cartilage has little repair postertial due to lack of perichondrium and direct blood circulation. It is, therefore important to consider this phenomena in surgical treatments. One of the articular cartilage reconstructive surgeries is using Osteo-Chondral graft. The main purpose of this re...
متن کاملCartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model.
Tissue engineering combined with gene therapy is a promising approach for promoting articular cartilage repair. Here, we tested the hypothesis that engineered cartilage with chondrocytes overexpressing a human insulin-like growth factor I (IGF-I) gene can enhance the repair of osteochondral defects, in a manner dependent on the duration of cultivation. Genetically modified chondrocytes were cul...
متن کاملRepair of defects in articular joints. Prospects for material-based solutions in tissue engineering.
©2004 British Editorial Society of Bone and Joint Surgery doi:10.1302/0301-620X.86B8. 15609 $2.00 J Bone Joint Surg [Br] 2004;86-B:1093-9. Each year, more than one million procedures to treat defects of articular cartilage are performed in the knee alone.1 While removal of loose bodies and the chondroplastic procedures of debridement and shaving account for approximately half of these, the rema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomolecular engineering
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2007